






### System Features



#### Operation Indicator Tool

To show the indoor air quality indicators and keep the optimal environment comfort, the system adapting wireless communication technology, uses sensors to collect data for temperature, humidity, CO<sub>2</sub> level and equipment power usage for live display.



## Operation Control

Can define a power unload strategy based on contract capacity, and further provide demand trend forecast and multi-stage active adjustment settings.



#### Energy Efficiency Decline Alarm

The system can continuously track status of equipment efficiency, provide the efficiency decline alarm for chillers and other devices, and further inform management team to arrange maintenance in advance.



## Simulation Prediction Tool

Instantly collect weather and cooling load demand info to predict trends. The system actively and dynamically adjusts operation settings of each device based on demands, simulates the total energy usage, and matches the demand management simultaneously.



# Optimal Operation Strategy

Dynamic optimization and adjustment of equipment operating parameters for indoor air side and water side to achieve the full HVAC system energy saving control.

### System Functions

| System Functions |                  |                                                         |                                                                                                                                                                                  |                                                                                                                                  |
|------------------|------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Device           |                  | Function                                                | Hardware Requirement                                                                                                                                                             | Benefits                                                                                                                         |
| Full<br>System   | Device           | Cooling load dynamic prediction                         | T/RH Sensor/CO₂ Sensor<br>DDC/IWA KIT<br>Ice Storage Tank Level Gauge<br>People Counting System                                                                                  | Ensure the cooling load demand is rationalized to avoid over ice storage reducing the system efficiency                          |
|                  |                  | HVAC power consumption dynamic prediction               | Main devices power consumption sensing<br>Cooling Load Dynamic Prediction System                                                                                                 | Energy Flow Management                                                                                                           |
|                  |                  | Demand operation control                                | DDC/IWA KIT<br>Cooling Load Dynamic Prediction System                                                                                                                            | Reduce power contract capacity                                                                                                   |
|                  |                  | Sensing components value comparison                     | DDC/IWA KIT (Digital Logic Controller)<br>Air & Water Side Sensing Components                                                                                                    | Keep system reliability & reduce sensing components calibration costs                                                            |
| Air<br>Side      | AHU/PAH          | Environment optimal comfort control                     | Network Thermostat<br>Indoor T/RH Sensor                                                                                                                                         | Actively keep indoor comfort and reduce discomfort when cooling load changes                                                     |
|                  |                  | People sensing linking control                          | Network Thermostat<br>People Sensing System                                                                                                                                      | Avoid unnecessary energy usage                                                                                                   |
|                  |                  | Outside air optimization control                        | T/RH Sensor/CO₂ Sensor<br>PM2.5 Sensor<br>Network Thermostat                                                                                                                     | Provide sufficient outside air supply to keep indoor air quality and to reduce air cooling load                                  |
|                  |                  | Air volume optimization control                         | Indoor T/RH Sensor<br>DDC/IWA KIT<br>Inverter                                                                                                                                    | Control the system with an optimized algorithm so can achieve the optimal operation and energy saving for the fan                |
|                  |                  | Operation and maintenance alarm                         | Chilled water temperature sensing<br>Coil pressure difference sensing<br>Supply/Return air temperature & humidity sensing<br>Operating power measurement                         | Reduce the risk of the equipment operation and proactively ensure the performance of the equipment operation                     |
| Water<br>Side    | Chiller          | Chilled water effluent temperature optimization control | Indoor T/RH Sensor<br>Remote chilled water supply temperature setting                                                                                                            | Optimize the control through algorithm to achieve<br>the optimal operation and energy saving of the<br>chilled water temperature |
|                  |                  | Optimal operation combination control                   | Remote on/off setting<br>In and out water temperature sensing (chilled water<br>& cooling water)<br>Operating flow sensing<br>Operating power measurement                        | Improve the operation efficiency of the chiller and avoid unnecessary energy consumption                                         |
|                  |                  | Operation & Maintenance alarm                           | Refrigerant side pressure sensing<br>Chiller water & cooling water temperature sensing<br>Operating flow sensing (chilled water & cooling water )<br>Operating power measurement | Reduce the declining energy consumption & Reduce the equipment operation risk                                                    |
|                  | Cooling<br>Tower | Cooling water effluent temperature optimization control | Outdoor T/RH Sensor<br>Cooling water temperature sensing<br>DDC/IWA KIT(Digital Logic Controller)<br>Inverter                                                                    | Optimize the control through algorithm to achieve the optimal operation and energy saving of the cooling tower fan               |
|                  |                  | Operation & Maintenance alarm                           | Outdoor T/RH Sensor<br>Cooling water temperature sensing<br>Inverter<br>Operating power measurement                                                                              | Reduce the declining energy consumption and the equipment/devices operation risk                                                 |

### ■ Product Specifications



#### **Digital Logic** Controller- HVAC

Dimension (LxWxH) 168×107×65 mm

Power requirement 5V~24V DC

Memory

2GB PRDDR4

Core processor

NXP I.MX8M Series

Video output

**HDMI** 

Communication interface USB 2.0 x 2

Mini PCIE card

Protocol

RJ-45 x 2, 10 / 100 / 1000 Mbps

Ethernet 802.11 AC WLAN

BT communication



#### Wireless Gateway

Dimension (L x W x H) 85×85×25 mm

Power requirement

DC 24V / PoE

Protocol

Wi-Fi Ethernet

IEEE 802.15.4



## Power Meter

Dimension (LxWxH)

AC 80-264V

communication

be set)

Input current EMV101

СТФ16mm (100A)



# Smart

110×83×52 mm

Power requirement

Network

RS-485

Ethernet

Input voltage

Phase voltage 80-350 VAC Line voltage 140-600 VAC

Input current EMA101 5A(Measurement ratio can

СТФ10mm (60A)

СТФ24mm (200A) СТФ36mm (300A)

СТФ36mm (400A)



#### Wireless 3 in 1 Sensor

Dimension (L x W x H) 56×56×12.5 mm

Power requirement

DC 24V 5V mini USB

Protocol IEEE 802.15.4 Mesh Network

Temperature

0-50 °C Humidity

1-99%RH

CO<sub>2</sub> concentration 0-2,000ppm



### Wireless AI/AO Converter

Dimension (L x W x H) 180×77×30 mm

Protocol

IFFF 802 15 4

Power requirement

AC 100 - 240V DC 12V / 24V

Specification


4AO+4AI AO: 10V PWM / 0-10V / 0-20mA AI: 0-10V / 0-20mA

The appearance of the product may be subject to slightly change.













